检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学计算机科学与技术学院,武汉430074 [2]华中科技大学电子与信息工程系,武汉430074
出 处:《计算机科学》2009年第7期79-81,96,共4页Computer Science
基 金:国家自然科学基金重大项目(No.60496315);国家自然科学基金(No.605020230);国家863计划(No.2003AA12331005)资助
摘 要:以数据包传输的通信量在不同网络条件下均表现出自相似性,自相似通信量在各时间尺度上均具有长程突发特性,其是以泊松过程为模型所描述的短程相关通信量所无法描述的。近来对自相似通信量的高精度测量与研究证实:网络中广泛存在的重尾特性是通信量自相似产生的原因。同时充分提取通信量的自相似性与重尾特性相关信息,是准确预测长程突发通信量的关键。在一种α-基于平稳过程的自相似通信量模型基础上,提出两种独立的自回归预测方法:FAR(Fractional Auto Regressive)预测、FNAR(Fractional Nonlienar Auto Regressive)预测。对这两种预测值进行不同方案的混合预测得到最终预测结果,进一步提高预测精度。The traffic with data packet transmission in various network conditions exhibits convincingly self-similarity causing the long range burstiness which cannot be captured by traditional telecommunication traffic models based on Poisson process or Markov process. The updated explicit high-resolution measurement and researches for the traffic reveal that the heavy tallness existing extensively in the network brings about the self-similarity of the traffic. The information extraction from the self-similarity and long range dependence is the key fact for the exact prediction of the long range bursty traffic. Two distinctive AutoRegressive predictors based on a-stable self-similar traffic model were presented. The predictors including FAR(Fractional AutoRegressive), FNAR(Fractional Nonlinear AutoRegressive) can minimize the dispersion according to the criteria with infinite variance. The final predicted values with the different schemes were obtained by combining the previous two individual predicted values for the higher predicted precision.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222