检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Automation, Shanghai Jiaotong University
出 处:《Journal of Shanghai Jiaotong university(Science)》2009年第3期299-305,共7页上海交通大学学报(英文版)
基 金:the National Natural Science Foundation of China (No. 60675041);the Program for New Century Excellent Talents in University (No. NCET-06-0398)
摘 要:This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system is figured out by the system’s internal and external constraints. Task plan and coordination are then transformed as trajectory solving problem in the state space, by which the realizable conditions for the given task are discussed. If the task is realizable, the optimal strategy for task execution could be investigated and obtained in state space. Otherwise, it could be transformed to be realizable via adjusting the system configuration and/or task constraint, and the transformation condition could also be determined. This contributes to design, plan, and coordination of the robotic tasks. Experiments of the manipulator path planning and multi-robot formation movement are conducted to show the validity and generalization of the proposed method.This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system is figured out by the system's internal and external constraints: Task plan and coordination are then transformed as trajectory solving problem in the state space, by which the realizable conditions for the given task are discussed. If the task is realizable, the optimal strategy for task execution could be investigated and obtained in state space. Otherwise, it could be transformed to be realizable via adjusting the system configuration and/or task constraint, and the transformation condition could also be determined. This contributes to design, plan, and coordination of the robotic tasks. Experiments of the manipulator path planning and multi-robot formation movement are conducted to show the validity and generalization of the proposed method.
关 键 词:robot system PLAN COORDINATION state space trajectory transition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.97.243