检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学,西安710072
出 处:《材料科学与工艺》1998年第2期79-82,共4页Materials Science and Technology
基 金:国家自然科学基金!59471071
摘 要:超塑变形往往具有空洞敏感性,对空洞的研究引起国内外学者的重视并取得较大进展,但现有描述起塑变形时空洞损伤行为的力学模型普遍存在精度问题。利用神经网络对超塑变形时的空洞损伤程度进行预测,不仅可提高精度,同时亦能充分反映超塑变形工艺参数对损伤的影响规律。因此,这就为研究超塑变形时的空洞损伤提供了一种新方法。Superplastic materials generally cavitate during superplastic deformation.Cavitation may lead to decreasing of forming limit and worsening of formed workpieces.We think description of such cavitation requires a suitable model.We now present such a model.Which is established by training the artificial neural network with the damage values obtained on half-hardened brass H62 under different processing conditions of superplastic deformation.It is found that the damage levels predicted by the trained artificial neural network agree closely with actual experimental results and that the model improves the predicting precision in comparison with the traditional model.
分 类 号:TB301[一般工业技术—材料科学与工程] TG111.7[金属学及工艺—物理冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.112.17