Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-β  被引量:7

Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-β

在线阅读下载全文

作  者:FANG Xiang-qian FANG Mei FAN Shun-wu GU Chuan-long 

机构地区:[1]Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China [2]Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China [3]Department of Cell Biology and Anatomy, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China

出  处:《Chinese Medical Journal》2009年第14期1631-1635,共5页中华医学杂志(英文版)

基  金:This study was supported by grants from the Major Science Research Program of Zhejiang Province (No. 2006C23029), Medical Science Foundation of Zhejiang Province (No. 2005HN007) and Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents.

摘  要:Background Erythropoietin (EPO) functions as a tissue-protective cytokine in addition to its crucial hormonal role in red cell production and neuron protection. This study aimed to determine the neuron protective effect of erythropoietin on experimental rats enduring spinal cord injury (SCI) by assessing thrombospondin-1 (TSP-1) level and transforming growth factor-β (TGF-β) in the development of a rat model of SCI. Methods Sixty Sprague-Dawley rats were randomly assigned to three groups: sham operation control group, SCI group and EPO treatment group. By using a weight-drop contusion SCI model, the rats in the SCI group and EPO treatment group were sacrificed at 24 hours and 7 days subsequently. The Basso, Beattie, and Bresnahan (BBB) scores were examined for locomotor function. Pathological changes were observed after HE staining. The expressions of thrombospondin-2 (TSP-1) and TGF-β were determined by immunohistochemical staining and Western blotting. Results Slighter locomotor dysfunction was discovered and it was recovered abruptly as higher BBB scores were found in the EPO treatment group than in the SCI group (P 〈0.01). Pathologically, progressive disruption of the dorsal white matter and regeneration of a few neurons were also observed in SCI rats. TSP-1 and TGF-β expression increased at 24 hours and 7 days after SCI in the injured segment, and it was higher in the SCI group than in the EPO treatment group. Spinal cord samples from the animals demonstrated a TSP-1 optical density of 112.2±6.8 and TSP-1 positive cells of 5.7±1.3 respectively. After injury, the TSP-1 optical density and cell number increased to 287.2±14.3/mm^2 and 23.2±2.6/mm^2 at 24 hours and to 232.1±13.2/mm^2 and 15.2±2.3/mm^2 at 7 days respectively. When EPO treated rats compared with the SCI rats, the TSP-1 optical density and cell number decreased to 213.1 ±11.6/mm^2 and 11.9±1.6/mm^2 at 24 hours and to 189.9±10.5/mm^2 and 9.3±1.5/mm^2 at 7 days, respectively (P 〈0.01). In the SCI raBackground Erythropoietin (EPO) functions as a tissue-protective cytokine in addition to its crucial hormonal role in red cell production and neuron protection. This study aimed to determine the neuron protective effect of erythropoietin on experimental rats enduring spinal cord injury (SCI) by assessing thrombospondin-1 (TSP-1) level and transforming growth factor-β (TGF-β) in the development of a rat model of SCI. Methods Sixty Sprague-Dawley rats were randomly assigned to three groups: sham operation control group, SCI group and EPO treatment group. By using a weight-drop contusion SCI model, the rats in the SCI group and EPO treatment group were sacrificed at 24 hours and 7 days subsequently. The Basso, Beattie, and Bresnahan (BBB) scores were examined for locomotor function. Pathological changes were observed after HE staining. The expressions of thrombospondin-2 (TSP-1) and TGF-β were determined by immunohistochemical staining and Western blotting. Results Slighter locomotor dysfunction was discovered and it was recovered abruptly as higher BBB scores were found in the EPO treatment group than in the SCI group (P 〈0.01). Pathologically, progressive disruption of the dorsal white matter and regeneration of a few neurons were also observed in SCI rats. TSP-1 and TGF-β expression increased at 24 hours and 7 days after SCI in the injured segment, and it was higher in the SCI group than in the EPO treatment group. Spinal cord samples from the animals demonstrated a TSP-1 optical density of 112.2±6.8 and TSP-1 positive cells of 5.7±1.3 respectively. After injury, the TSP-1 optical density and cell number increased to 287.2±14.3/mm^2 and 23.2±2.6/mm^2 at 24 hours and to 232.1±13.2/mm^2 and 15.2±2.3/mm^2 at 7 days respectively. When EPO treated rats compared with the SCI rats, the TSP-1 optical density and cell number decreased to 213.1 ±11.6/mm^2 and 11.9±1.6/mm^2 at 24 hours and to 189.9±10.5/mm^2 and 9.3±1.5/mm^2 at 7 days, respectively (P 〈0.01). In the SCI ra

关 键 词:thrombospondin-1 transforming growthfactor-β spinal cord injury ERYTHROPOIETIN 

分 类 号:R686[医药卫生—骨科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象