检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孔庆颜[1] 柳文[1] 焦培南[1] 凡俊梅[1] 冯静[1] 鲁转侠[1]
机构地区:[1]中国电波传播研究所电波环境特性及模化技术国家重点实验室,青岛266107
出 处:《空间科学学报》2009年第4期377-382,共6页Chinese Journal of Space Science
基 金:国家基础研究项目;重点实验室基金项目(9140C0801070602)共同资助
摘 要:利用中国9个垂测站(海口、广州、重庆、拉萨、兰州、北京、乌鲁木齐、长春、满洲里)一个太阳周(1976—1986年)的数据资料,采用三层前向反馈神经网络(BP网络)实现了电离层F_2层临界频率(f_0F_2)参数提前24h预测。通过对f_0F_2参数的时间序列及其与日地活动之间进行相关分析,确定f(t) (当前时刻f_0F_2)、经过变换的F_(10.7)指数等5个参数作为神经网络的输入参数,并通过同时段训练法获得不同时刻的预测值,本文与自相关分析法进行了预测性能比较。结果表明,上述方法构建的神经网络可以达到较高的预测精度。针对暴时数据,对神经网络算法进行了改进,提高了神经网络法对暴时数据的适用性。Using three-layer feed-forward back propagation neural networks, twenty-four hour ahead prediction of the critical parameter of ionospheric F2 layer (f0F2) is realized. The prediction model is developed based on 11 years of data (from 1976 to 1986) measured from China vertical station (Haikou, Guangzhou, Chongqing, Lhasa, Lanzhou, Beijing, Urumchi, ChangChun, Manchuria). By analyzing time series correlation of foF2 and solar-terrestrial activity, five input parameters are determined. The same-time training method is selected and the prediction values within 24 hour can be obtained without changing the network frame. By comparing the prediction property of Neural Network (NN) method and the autocorrelation one (named Corr), for quite data the NN method has higher accuracy except for summer data. While for the whole year data set, the Corr is better. In order to improve the applicability of the method for storm-time data, NN is corrected, and using two specified examples to explain the improvement in the article. After such modification, NN is better than Corr for the same test data as that used above.
分 类 号:P352[天文地球—空间物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15