检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《信号处理》2009年第7期1160-1163,共4页Journal of Signal Processing
基 金:国家自然科学联合基金资助。项目名称:扩频信号的近似盲检测与参数估计方法研究。项目批准号:10676006
摘 要:本文提出一种基于广义能量函数(GEF)的直接序列扩频(DS/SS)信号扩频码序列的盲估计方法。广义能量函数通过引入一个加权矩阵来优化线性神经网络的连接权矢量,可以推导出一种新的递归最小二乘(RLS)学习算法。该算法能高效提取一个输入信号相关矩阵的多个主分量,可对同步和非同步模型下的PN码序列实现盲估计。该算法具有收敛快、稳健性好等优点,其运算量和储存量远远小于特征值分解算法,收敛速度、相关性能和运算复杂度等恢复性能优于压缩投影逼近子空间跟踪(PASTd)算法和改进神经网络(MHR)算法。计算机仿真证明,该算法能在较低的信噪比条件下,实时高效地恢复PN码序列,具有优异的性能。This paper provides a Generalized Energy Function (GEF) to search for the optimum weights to estimate the PN spreading sequence by introducing a weighting matrix, which can parallel and real-time acquire the principal eigenvectors of the covariance with high efficiency. The GEF algorithm can work by real-time and be easily implemented both in synchronization and asynchronization signal modes. Computer simulations show that this algorithm can estimate PN spreading sequence quickly and accurately at low Signal-to-Noise Ratio (SNR), largely reducing computational complexity and storage than EVD. Furthermore,its properties of convergence, correlation and computational storage are better than Projection Approximation Subspace Tracking (PAST) and Modified Hebbian Rule (MHR) algorithms.
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.129.242