检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Tinghua HUANG Houkuan TIAN Shengfeng DENG Dayong
机构地区:[1]School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China [2]School of Mathematics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
出 处:《Chinese Journal of Electronics》2009年第2期265-269,共5页电子学报(英文版)
摘 要:The problem of model selection for Support vector machines (SVM) with general Gaussian kernels is considered. Unlike the conventional standard single scale Gaussian kernels, where all the basis functions have a common kernel width, the general Gaussian kernels adopt some linear transformations of input space such that not only the scaling but also the rotation is adapted. We pro- posed a gradient-based method for learning the optimal general Gaussian kernels by optimizing kernel polarization. This method can find a more powerful kernel for a given classification problem without designing any classifier. Experiments on both synthetic and real data sets demonstrate that tuning of the scaling and rotation of Gaussian kernels using our method can yield better generalization performance of support vector machines.
关 键 词:General Gaussian kernels Kernel polar- ization Support vector machines (SVM) Model selection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3