一种基于神经网络的入侵检测技术  被引量:3

Technology of Intrusion Detection Based on Neural Network

在线阅读下载全文

作  者:薛俊[1,2] 陈行[1,2] 陶军[1,2] 

机构地区:[1]东南大学计算机科学与工程学院,江苏南京210096 [2]东南大学计算机网络与信息集成教育部重点实验室,江苏南京210096

出  处:《计算机技术与发展》2009年第8期148-150,154,共4页Computer Technology and Development

基  金:国家自然科学基金重大研究计划项目(90604003)

摘  要:应用神经网络技术不仅能识别已知的网络入侵行为,而且也能识别许多未知的网络入侵的变种。BP神经网络是一种成功的神经网络技术,然而,标准BP算法学习速率固定,不能根据实际情况动态改变学习速率。为了自适应当前网络学习的状况,提高网络的收敛速度,提出了一种基于综合增加动量项与自适应调节学习速率相结合的改进BP算法,可以满足入侵检测分类识别的需求。选用Kddcup 1999 Data网络连接数据集进行特征提取和预处理之后,送入神经网络进行训练和测试,得到较高的检测率和较低的误报率。实验表明,基于改进的BP神经网络的入侵检测方法是有效的。Neural network can recognize the known action of network attacks as well as the unknown variation of the known network intrusion. Neural network based on BP algorithm is a kind of successful technology. However, the learning rate of the standard BP algorithm is static, and cannot be adjusted dynamically according to current real situation. In order to self- adjust the current studying status of neural network and enhance the speed of convergence of network, here present and apply the improved BP algorithm combined a method of adding momentum item(s) with the self- adjusting learning rate in the paper. The improved BPNN can meet the needs of classifted recognition of IDS. Experiments with KDD CUP 1999 network traffic connections which have been preprocessed after feature abstraction have shown that the improved BPNN is effective for intrusion detection owing to good performance of the higher attack detection rate and the lower false positive rate.

关 键 词:入侵检测 BP算法 检测率 误报率 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象