基于SBL-PRM算法的柑橘采摘机器人实时路径规划  被引量:9

Real-time path planning for citrus picking robot based on SBL-PRM

在线阅读下载全文

作  者:蔡健荣[1] 王锋[1] 吕强[1] 王建黑[1] 

机构地区:[1]江苏大学食品与生物工程学院,镇江212013

出  处:《农业工程学报》2009年第6期158-162,共5页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家863项目(2006AA10Z263);国家自然科学基金资助项目(30771243)

摘  要:针对动态非结构化环境下的柑橘采摘机器人实时路径规划问题,采用单次查询、双向采样与延迟碰撞检测相结合的SBL-PRM(Single-query,Bi-directional,Lazy collision checking,Probabilistic Roadmap Method)算法,对无遮挡和遮挡两种场景下的柑橘采摘情况进行仿真试验,分析最大采样点数S、邻域阈值ρ、局部路径检测阈值ε、路径平滑次数N等参数对规划时间和成功率的影响。结果表明,在S=3000,ρ=0.6,ε=0.03,N=10时,无遮挡和遮挡两种场景下路径规划的平均时间分别为1ms、60ms左右,规划成功率均为100%。仿真试验证明了SBL-PRM算法在柑橘采摘机器人实时路径规划中的有效性。A single-query bi-directional probabilistic roadmap planner with lazy collision checking was adopted for citrus picking robot real-time path planning in dynamic and unstructured environments. Simulation of the planner was carried out in two cases of picking exposed and overlapped fruits. The effects of maximum number of milestones S, neighboring threshold p, local path checking threshold e and path smoother steps N on average time and success rate of planning were analyzed. When S, p, e, and N were 3000, 0.6, 0.03, 10 respectively, simulation results indicated that the average planning time was about lms for picking exposed fruits and 60 ms for picking overlapped ones, and the success rates of planning were both 100%. The simulation experiment shows that SBL-PRM is effective in the citrus picking robot real-time path planning.

关 键 词:柑橘采摘机器人 实时路径规划 双向采样 单次查询 延迟碰撞检测 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象