检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴敏[1] 丁雷[1,2] 曹卫华[1] 段平[1]
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083 [2]吉首大学物理科学与信息工程学院,湖南吉首416000
出 处:《控制理论与应用》2009年第7期739-744,共6页Control Theory & Applications
基 金:国家杰出青年科学基金资助项目(60425310);国家"863"计划课题(2008AA04Z128)
摘 要:针对影响铅锌烧结过程烧穿点的因素具有不确定性的特点,提出一种基于信息熵技术的烧穿点集成预测模型.首先利用软测量技术获得烧穿点.然后建立基于满意聚类的T-S预测模型以降低不确性因素所带来的影响,并将共轭梯度法和粒子群优化算法有机结合起来进行T-S模型中各个子模型的参数辨识,以提高辨识精度.接着建立基于工艺参数的神经网络预测模型.最后考虑到信息熵技术具有信息融合和降低不确定性的能力,利用其将以上预测模型进行集成.实验结果表明所提出的集成预测模型具有较高的预测精度和较强的适应性.To deal with the uncertainty in the determination of the burn-through-point(BTP) in a lead-zinc sintering process, we develop an integrated prediction model based on the information entropy technology to predict the BTP. The BTP value is acquired by using the soft-sensor technology; a Takagi-Surgeon(T-S) model of satisfactory clustering is developed to reduce the negative effects brought by the uncertainties. To improve the identification accuracy, a particle swarm optimization algorithm combined organically with the conjugate gradient algorithm is applied to identify the parameters of each sub-model of the T-S prediction model. Next, a technological-parameter-based model for predicting the BTP is established using neural networks. To make use of the capabilities of information fusion and uncertainties reduction in the information entropy technology, we integrate the two prediction models by using the information entropy technology. The experiment results show that the proposed integrated prediction method features high precision and strong adaptability.
分 类 号:TF046.4[冶金工程—冶金物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.174