检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CAO FeiLong ZHANG YongQuan XU ZongBen
机构地区:[1]College of Science, China Jiliang University, Hangzhou 310018, China [2]Institute of Information and System Sciences, Xi'an Jiaotong University, Xi'an 710049, China
出 处:《Science in China(Series F)》2009年第8期1321-1327,共7页中国科学(F辑英文版)
基 金:Supported by the National Natural Science Foundation of China (Grant No. 60873206);the National Basic Research Program of China(Grant No. 2007CB311002)
摘 要:Let SFd and ∏φ,n,d ={∑j^n=1bjφ(wj.x+θj):bj,θj∈R,wj∈R^d} be the set of periodic and Lebesgue's square-integrable functions and the set of feedforward neural network (FNN) functions, respectively. Denote by dist (SFd , ∏φ,n,d) the deviation of the set SFd from the set ∏φ,n,d. A main purpose of this paper is to estimate the deviation. In particular, based on the Fourier transforms and the theory of approximation, a lower estimation for dist (SFd and ∏φ,n,d) is proved. That is, dist(SFd and ∏φ,n,d) ≥C/(nlog2n)1/2. The obtained estimation depends only on the number of neuron in the hidden layer, and is independent of the approximated target functions and dimensional number of input. This estimation also reveals the relationship between the approximation rate of FNNs and the topology structure of hidden layer.Let SFd and ∏φ,n,d ={∑j^n=1bjφ(wj.x+θj):bj,θj∈R,wj∈R^d} be the set of periodic and Lebesgue's square-integrable functions and the set of feedforward neural network (FNN) functions, respectively. Denote by dist (SFd , ∏φ,n,d) the deviation of the set SFd from the set ∏φ,n,d. A main purpose of this paper is to estimate the deviation. In particular, based on the Fourier transforms and the theory of approximation, a lower estimation for dist (SFd and ∏φ,n,d) is proved. That is, dist(SFd and ∏φ,n,d) ≥C/(nlog2n)1/2. The obtained estimation depends only on the number of neuron in the hidden layer, and is independent of the approximated target functions and dimensional number of input. This estimation also reveals the relationship between the approximation rate of FNNs and the topology structure of hidden layer.
关 键 词:feedforward neural networks APPROXIMATION topology structure of hidden layer RATE LOWER
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117