检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《宇航学报》2009年第4期1564-1568,共5页Journal of Astronautics
摘 要:提出一种基于积分变换,广义乘子法和拟牛顿法的月球着陆轨道快速优化方法。从探月器质心运动方程组出发,通过积分变换,将其对时间变量的积分转化为对状态变量(探月器环绕月心的旋转角速度)的积分,使得原问题转化为终端积分变量固定型最优控制问题。在此基础上,通过优化变量的直接离散化和四阶Admas预测-校正数值积分方法,将月球最优着陆问题转化为有约束非线性规划问题。采用广义乘子法处理约束条件,采用拟牛顿法求解处理后的无约束最优化问题。仿真结果表明:此方法收敛速度快(耗时小于1s),优化精度高(接近理论最优解),对初始控制量不敏感、鲁棒性好,可用于探月器机载计算机实时生成着陆轨道。A rapid approach, based on integral transformation, generalized Lagrange muhiplier (GLM) , and quasi- Newton's method was proposed for lunar landing trajectory optimization. Through integral transformation, a state variable was introduced in stead of time in the motion equations of the lander, and the optimal landing problem was transformed into a fixed final integral variable optimal control problem. By direct diseretization of the control variable, the obtained new problem was converted into nonlinear programming (NLP) with 4th Admas predict-modification scheme as integrating procedure. Generalized Lagrange multiplier was used to dispose of constraints in NLP, and the obtained unconstrained NLP was solved with quasi-Newton' s method. Simulation results demonstrate good accuracy (nearly identical with theoretical solutions) , rapid convergence (time consumption less than 1 second) , and rnbustness with initial values of this approach, which make it a promising candidate for on-line generating a feasible landing trajectory on the onboard computer.
关 键 词:月球着陆 快速优化 积分变换 广义乘子法 拟牛顿法
分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15