从实测轨迹提取知识时的困难及展望  被引量:18

Difficulties and Prospects of Knowledge Extracting from Measured Trajectories

在线阅读下载全文

作  者:徐伟[1,2] 薛禹胜[2,1] 陈实[3] 葛斐[3] Zhaoyang DONG 

机构地区:[1]东南大学电气工程学院,江苏省南京市210096 [2]国网电力科学研究院/南京南瑞集团公司,江苏省南京市210003 [3]安徽省电力公司,安徽省合肥市230002 [4]香港理工大学电机工程学系,香港

出  处:《电力系统自动化》2009年第15期1-7,共7页Automation of Electric Power Systems

基  金:国家自然科学基金重大资助项目(50595413);国家电网公司科技项目(SGKJ[2007]98&187)~~

摘  要:分析实测轨迹可提供的知识,并按对模型依赖的程度分类。强调在不依赖系统模型的前提下,提炼受扰轨迹信息的重要性。归纳先对实测轨迹降维再提取知识的思路,即利用保稳降维变换将多机轨迹模态的时域识别任务转化为单机的对应问题。采用时频分析方法提取映象单机轨迹的时变特征,并研究轨迹降维及时变因素的影响。指出应该采用可信度校验,在轨迹时变性过强的场合给出提示。指出模型与参数的校核关键是建立随着轨迹动态特征的差异程度而单调变化的指标,进而通过其灵敏度搜索收敛到真值附近。Knowledge extracted from measured trajectories is categorized according to the support extent of system models. The importance of extracting information from disturbed trajectories without system models is emphasized. The idea of extracting knowledge after trajectory aggregation is summarized. Therefore, mode identification task of multi-machine trajectories in time domain is converted into that of single-machine trajectory with the stability-preserving dimensional-reduction transformation. Time-frequency analysis methods are adopted to extract time-varylng dynamic characteristics from the image trajectory of the single-machine. The effects of trajectory aggregation and time-variation are studied. Credibility verification is needed when time-variation is strong. For verifying the model and parameter, proper index is needed to quantize the differences between two sets of trajectories. Then, sensitivity analysis of the index can be applied to identify the actual model and parameter.

关 键 词:实测轨迹 动态特征 无模型分析 知识提取 时变性 

分 类 号:TM743[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象