结合图像属性的MSD-FICA盲水印算法  被引量:3

Using MSD-FICA and Combine with Image Property for a Blind Watermarking Algorithm

在线阅读下载全文

作  者:刘金华[1] 佘堃[1] 王文旻[1] 

机构地区:[1]电子科技大学计算机科学与工程学院,成都610054

出  处:《电子科技大学学报》2009年第4期542-545,620,共5页Journal of University of Electronic Science and Technology of China

基  金:四川省科技攻关项目(Y02001010601011)

摘  要:基于图像高频子分量相互独立的属性,再结合图像低频能量不易丢失的特点,该文设计了多分辨率子带分解的快速独立分量分析(MSD-FICA)盲水印算法,借鉴了经典的量化调制水印(QIM)算法思想,对原始图像小波分解后的高频成分(水平、垂直、对角小波系数)进行排序,取中频成分。嵌入水印是对中频分量系数和低频分量系数同时嵌入,水印的提取采用快速独立分量分析(FICA)算法,先用主成分分析进行预处理,然后用FICA盲提取水印。实验表明,该算法能有效地提取出水印,并能抵抗一定的压缩、滤波、噪声攻击。A blind image watermarking algorithm based on the multiresolution sub-band decomposition-fast independent component analysis (MSD-FICA) is proposed. In this scheme, the watermark bits are embedded in the middle-frequency components and the low-frequency components simultaneously. The middle-frequency components are selected by adopting the sorting scheme among the high-frequency components. In watermarking extraction, primary component analysis (PCA) is applied for preprocess, then the watermark is extracted by FICA. The experimental results show that the proposed algorithm is robust against JPEG compression, Gaussian noise, and median filtering. The comparison analysis demonstrates that our scheme has better performance than the QIM watermarking scheme.

关 键 词:盲水印算法 数字水印 图像属性 小波 

分 类 号:TN959.3[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象