检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛科技大学计算机与化工研究所,山东青岛266042
出 处:《计算机与应用化学》2009年第8期1079-1083,共5页Computers and Applied Chemistry
摘 要:对含有多个杂质的间歇用水网络进行综合研究,提出了用水周期的概念,基于不失问题的内在特性原则,提出了模型简化的基本假设,并通过增加中间储罐来跨过时间约束,提出了基于超结构的多杂质用水网络模型,建立了该超结构模型的数学规划模型;提出了该数学模型的分步求解策略:①不考虑时间约束,将看成1个拟连续过程,获得间歇用水的目标网络;②引入时间约束,调整间歇用水网络结构,优化未稳定用水单元,向目标网络逼进;③最终获得最优的间歇用水网络结构。实例研究表明,本文提出的方法是间歇过程多杂质用水网络结构设计的有效工具,可在较少周期后获得稳定的网络结构,新鲜水用量可节省34.9%。Water-using network synthesis with multiple contaminants (MWNS) for batch processes is studied, the water-using cycle is defined, and some hypotheses are supposed to reduce the complex of MWNS problems on the batch characteristics. The time limitations to reuse or recycle the discharged water of each water-using unit are eliminated by adding storage tanks. A superstructure model of MWNS for batch processed is established and is described by nonlinear programming (NLP) mathematical models. A stepwise solution for the NLP model is presented in which: (i) the batch process is regarded as a pseudo-continuous process without the consideration of the time constraint firstly, and a target network is obtained; (ii) then the time limitations are introduced, and the non-steady water-using units are optimized, and the water-using network for batch is modified to approach the target network; (iii) repeat the second step and the minimum water-using network is obtained. In the last part of the paper, the model and the solution method are used in an water-using case, the results show which is effective and efficient for freshwater minimization, the case could save 34.9% fresh water.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249