协克里格法在空间插值中的研究应用  被引量:5

Cokriging algorithm applied for Interpolation

在线阅读下载全文

作  者:弓小平[1] 程勖[2] 

机构地区:[1]新疆大学地理学科博士后科研流动站,新疆乌鲁木齐830046 [2]吉林大学综合信息矿产预测研究所,吉林长春130026

出  处:《西北大学学报(自然科学版)》2009年第4期533-537,共5页Journal of Northwest University(Natural Science Edition)

基  金:国家"863"基金资助项目(2002AA135160);中国博士后科学基金资助项目

摘  要:目的为提高矿产储量计算的精确度,解决空间数据量缺乏问题,分析协克里格法(Cokrig-ing)在空间数据架构的理论依据。方法采用协克里格法,研究阿舍勒矿床铜矿储量资源在勘探开发中,由于空间数据量受地质条件、所处地理位置等不同条件的影响,提高储量资源的预测结果精度,并考虑样品的概率分布函数,突破了观测值线性组合的估计模式,认为协克里格法是最优、无偏内插的一种方法。结果建立一种矿产储量预测的数学模型,计算结果:离散方差验证法参数为均值106.92、方差954.52、标准方差30.89、标准平均值-0.124、均方根预测误差1.56。结论通过离散方差检验、QQ检验方法验证表明,采用协克里格法建立的数学模型可以较好地预测矿产储量,解决由于空间数据量缺乏问题,提高预测精度。Aim Calculation of mineral reserves to improve the accuracy, resolving the problem the lack of spatial data, analyzing Association Kriging using in the spatial data at the theoretical basis for architecture. Methods Using Association Kriging study Ashele copper deposit reserves resources in the exploration and development, to analyze the amount of data by the geological conditions, geographical location, the impact of different conditions, reserves resources to improve the accuracy of prediction results. And taking samples of the probability distribution function, it broke through a linear combination of observed values of the estimated model, proposed by the Association Kriging is the optimal, unbiased a method of interpolation. Results A mathematical model of prediction in mineral reserves to be built. Discrete variance to verify parameters-mean is 106.92 ,variance is 954. 52, standard deviation is 30.89, standard averageis -0. 124, root mean square error is 1.56. Conclusion By using of dispersion variance, QQ-plot, and Association Kriging using to set up a mathematical model can be used to predict mineral reserves, the amount of data to solve because of lack of space problem, and improve the accuracy of prediction.

关 键 词:协克里格法 协同区域化 矿产储量 

分 类 号:P628.2[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象