Sound field of thermoacoustic tomography based on a modified finite-difference time-domain method  被引量:5

Sound field of thermoacoustic tomography based on a modified finite-difference time-domain method

在线阅读下载全文

作  者:ZHANG Chi WANG Yuanyuan 

机构地区:[1]Department of Electronic Engineering, Fudan University Shanghai 200433

出  处:《Chinese Journal of Acoustics》2009年第3期209-219,共11页声学学报(英文版)

基  金:supported by the National Basic Research Program of China(2006CB705707);the National Natural Science Foundation of China(No.30570488);Shanghai Leading Academic DisciplineProject(B112).

摘  要:A modified finite-difference time-domain (FDTD) method is proposed for the sound field simulation of the thermoacoustic tomography (TAT) in the acoustic speed inhomogeneous medium. First, the basic equations of the TAT are discretized to difference ones by the FDTD. Then the electromagnetic pulse, the excitation source of the TAT, is modified twice to eliminate the error introduced by high frequency electromagnetic waves. Computer simulations are carried out to validate this method. It is shown that the FDTD method has a better accuracy than the commonly used time-of-flight (TOF) method in the TAT with the inhomogeneous acoustic speed. The error of the FDTD is ten times smaller than that of the TOF in the simulation for the acoustic speed difference larger than 50%. So this FDTD method is an efficient one for the sound field simulation of the TAT and can provide the theoretical basis for the study of reconstruction algorithms of the TAT in the acoustic heterogeneous medium.A modified finite-difference time-domain (FDTD) method is proposed for the sound field simulation of the thermoacoustic tomography (TAT) in the acoustic speed inhomogeneous medium. First, the basic equations of the TAT are discretized to difference ones by the FDTD. Then the electromagnetic pulse, the excitation source of the TAT, is modified twice to eliminate the error introduced by high frequency electromagnetic waves. Computer simulations are carried out to validate this method. It is shown that the FDTD method has a better accuracy than the commonly used time-of-flight (TOF) method in the TAT with the inhomogeneous acoustic speed. The error of the FDTD is ten times smaller than that of the TOF in the simulation for the acoustic speed difference larger than 50%. So this FDTD method is an efficient one for the sound field simulation of the TAT and can provide the theoretical basis for the study of reconstruction algorithms of the TAT in the acoustic heterogeneous medium.

分 类 号:TN011[电子电信—物理电子学] TU112.24[建筑科学—建筑理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象