求解TSP的改进量子蚁群算法  被引量:9

Improved quantum ant colony algorithm for TSP

在线阅读下载全文

作  者:李跃光[1] 赵俊生[1] 张远平[2] 

机构地区:[1]甘肃民族师范学院计算机与科学系,甘肃合作747000 [2]兰州理工大学计算机与通信学院,甘肃兰州730050

出  处:《计算机工程与设计》2009年第16期3843-3845,3874,共4页Computer Engineering and Design

基  金:甘肃省教育厅科研基金项目(0614B-03)

摘  要:将量子群进化算法(QEA)与蚁群系统(ACS)进行融合,提出一种新的量子蚁群算法(QACA)。该算法的核心是在蚁群系统(ACS)中引入量子算法中的量子的态矢量和量子旋转门来分别表示和更新信息素。该算法在全局寻优能力和种群多样性方面比蚁群算法有所改进,并结合TSP,对算法进行了测试,得到了与现有文献结果相同或更好的解,表明该算法是求解TSP的一种有效的算法。The algorithm is based on the combination of quantum evolutionary algorithm (QEA) and ant colony system (ACS), a new algorithm, quantum ant colony algorithm (QACA) is proposed. The core is that Q-bit and quantum rotation gate adopted in QEA are introduced into ACS to represent and update the pheromone respectively, so it has better diversity and global search capacity. The experimental result demonstrates that QACA can get better solutions to some traveling salesman problems (TSP) than the solutions given in existing bibliographer, it indicate that the algorithm is effective to solve TSP.

关 键 词:量子算法 量子进化算法 蚁群系统 量子蚁群算法 TSP 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象