检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西师范大学计算机科学学院,陕西西安710062
出 处:《计算机工程与科学》2009年第9期71-73,98,共4页Computer Engineering & Science
摘 要:为避免小生境遗传算法存在的早熟和收敛速度慢等问题,本文提出了一种改进的梯度算子,以保证进化朝最优解方向前进,提高计算峰值的精度。同时,利用进化代数和个体的适应度值,动态调整个体的交叉算子和变异算子,有效保证种群的多样性,改善全局搜索能力,加快收敛速度。将改进的梯度算子引入到基本小生境遗传算法和自适应小生境遗传算法,通过Shubert函数测试,证明本文改进后的算法与基本小生境遗传算法和自适应小生境遗传算法相比,不仅大大提高了收敛速度,并能搜索到所有全局最优解。To avoid the premature of niche genetic algorithms and improve their convergence speeds, this paper presents an improved gradient operator, and then introduces this new gradient operator to the niche genetic algorithm and the adaptive niche genetic algorithm respectively. Meanwhile this paper uses the dynamic crossover operators and dynamic mutation operators. The test results on the Shubert function show that this new algorithm can not only improve the convergence speed but also find the global optimal solutions.
关 键 词:梯度算子 自适应 小生境遗传算法 非均匀变异算子 非均匀交叉算子
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.190