ArchSim:A System-Level Parallel Simulation Platform for the Architecture Design of High Performance Computer  被引量:4

ArchSim:A System-Level Parallel Simulation Platform for the Architecture Design of High Performance Computer

在线阅读下载全文

作  者:黄永勤 李宏亮 谢向辉 钱磊 郝子宇 过锋 张昆 

机构地区:[1]Jiangnan Institue of Computing Technology

出  处:《Journal of Computer Science & Technology》2009年第5期901-912,共12页计算机科学技术学报(英文版)

基  金:supported by the National High Technology Research and Development 863 Program of China under Grant No. 2007AA01Z117;the National Basic Research 973 Program of China under Grant No.2007CB310900

摘  要:High performance computer (HPC) is a complex huge system, of which the architecture design meets increasing difficulties and risks. Traditional methods, such as theoretical analysis, component-level simulation and sequential simulation, are not applicable to system-level simulations of HPC systems. Even the parallel simulation using large-scale parallel machines also have many difficulties in scalability, reliability, generality, as well as efficiency. According to the current needs of HPC architecture design, this paper proposes a system-level parallel simulation platform: ArchSim. We first introduce the architecture of ArchSim simulation platform which is composed of a global server (GS), local server agents (LSA) and entities. Secondly, we emphasize some key techniques of ArchSim, including the synchronization protocol, the communication mechanism and the distributed checkpointing/restart mechanism. We then make a synthesized test of some main performance indices of ArchSim with the phold benchmark and analyze the extra overhead generated by ArchSim. Finally, based on ArchSim, we construct a parallel event-driven interconnection network simulator and a system-level simulator for a small scale HPC system with 256 processors. The results of the performance test and HPC system simulations demonstrate that ArchSim can achieve high speedup ratio and high scalability on parallel host machine and support system-level simulations for the architecture design of HPC systems.High performance computer (HPC) is a complex huge system, of which the architecture design meets increasing difficulties and risks. Traditional methods, such as theoretical analysis, component-level simulation and sequential simulation, are not applicable to system-level simulations of HPC systems. Even the parallel simulation using large-scale parallel machines also have many difficulties in scalability, reliability, generality, as well as efficiency. According to the current needs of HPC architecture design, this paper proposes a system-level parallel simulation platform: ArchSim. We first introduce the architecture of ArchSim simulation platform which is composed of a global server (GS), local server agents (LSA) and entities. Secondly, we emphasize some key techniques of ArchSim, including the synchronization protocol, the communication mechanism and the distributed checkpointing/restart mechanism. We then make a synthesized test of some main performance indices of ArchSim with the phold benchmark and analyze the extra overhead generated by ArchSim. Finally, based on ArchSim, we construct a parallel event-driven interconnection network simulator and a system-level simulator for a small scale HPC system with 256 processors. The results of the performance test and HPC system simulations demonstrate that ArchSim can achieve high speedup ratio and high scalability on parallel host machine and support system-level simulations for the architecture design of HPC systems.

关 键 词:high performance computer architecture system-level parallel simulation synchronization protocol message communication distributed checkpointing/restart 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象