Study on transport of Dy(Ⅲ) by dispersion supported liquid membrane  被引量:2

Study on transport of Dy(Ⅲ) by dispersion supported liquid membrane

在线阅读下载全文

作  者:裴亮 姚秉华 付兴隆 

机构地区:[1]Institute of Water Resources and Hydro-Electric Engineering,Xi'an University of Technology [2]Department of Applied Chemistry,Xi'an University of Technology

出  处:《Journal of Rare Earths》2009年第3期447-456,共10页稀土学报(英文版)

基  金:supported by the National Natural Science Foundation of China (90401009);Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (602-210805)

摘  要:The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Dy(III) and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Dy(III) were also investigated, respectively. As a result, when the concentration of HCI solution was 4.0 mol/L, concentration of PC-88A was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 40:20 in the dispersion phase, and pH value was 5.0 in the feed phase, the transport effect of Dy(III) was the best. Ionic strength had no obvious effect on transport of Dy(III). Under the optimum condition studied, when initial concentration of Dy(III) was 0.8×10^-4 mol/L, the transport rate of Dy(III) was up to 96.2% during the transport time of 95 rain. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Dy(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.99×10^-7 m^2/s and 15.97 μm, respectively. The results were in good agreement with experimental results.The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Dy(III) and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Dy(III) were also investigated, respectively. As a result, when the concentration of HCI solution was 4.0 mol/L, concentration of PC-88A was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 40:20 in the dispersion phase, and pH value was 5.0 in the feed phase, the transport effect of Dy(III) was the best. Ionic strength had no obvious effect on transport of Dy(III). Under the optimum condition studied, when initial concentration of Dy(III) was 0.8×10^-4 mol/L, the transport rate of Dy(III) was up to 96.2% during the transport time of 95 rain. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Dy(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.99×10^-7 m^2/s and 15.97 μm, respectively. The results were in good agreement with experimental results.

关 键 词:dispersion supported liquid membrane 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester dysprosium (III) rare earths 

分 类 号:TB383.2[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象