检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学计算机与通信学院,甘肃兰州730050
出 处:《兰州理工大学学报》2009年第4期89-93,共5页Journal of Lanzhou University of Technology
基 金:甘肃省高校研究生导师科研基金(0703-07)
摘 要:针对目前模糊支持向量机方法中,一般使用样本与类中心之间的距离关系构建隶属度函数的不足,提出一种改进的隶属度确定方法.该方法不仅考虑样本与类中心之间的关系,还考虑样本之间的关系根据样本的类中心与传统支持向量机构造的分类面构建2个超球,由样本点与超球的位置关系计算其隶属度,能够有效地区分样本点、噪音点以及孤立点.通过文本分类实验表明,与其他两种隶属度函数方法相比,基于双超球的模糊支持向量机方法可以更有效地将文本训练集中的噪音剔除,具有较好的分类性能.Aimed at the defect in the method of fuzzy support vector machine where the membership function was constructed by means of distance relation between the sample and cluster center,an improved method to determine the fuzzy membership was proposed.In this method not only the relationship of the sample and its cluster center was considered but the relationship of all samples also considered.Hence two super-spheres were constructed according to the cluster center of the samples and the classification hyperplane constructed in traditional support vector machine; and the membership was evaluated from the position relation of the sample points and super-spheres. The sample points, noise points, and outliers could effectively be distinguished with the membership determined. The experimental result demonstrated that compared to other two membership function methods, the super-sphere based fuzzy support vector machine method could effectively eliminate the concentrated noise in text training and exhibited better classification performance.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.239.193