Optimizing aerobic biodegradation of dichloromethane using response surface methodology  被引量:13

Optimizing aerobic biodegradation of dichloromethane using response surface methodology

在线阅读下载全文

作  者:WU Shijin,YU Xiang,HU Zhihang,ZHANG Lili,CHEN Jianmeng College of Biological and Environmental Engineering,Zhejiang University of Technology,Hangzhou 310032,China 

出  处:《Journal of Environmental Sciences》2009年第9期1276-1283,共8页环境科学学报(英文版)

基  金:supported by the Hi-Tech Research and Development Program (863) of China(No. 2006AA06A310);the National Natural Science Foundation of China(No.20476099)

摘  要:Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in pure culture. The parameters investigated include the initial DCM concentration, glucose as an inducer and hydrogen peroxide as terminal electron acceptor (TEA). Maximum aerobic biodegradation efficiency was predicted to occur when the initial DCM concentration was 380 mg/L, glucose 13.72 mg/L, and H202 115 mg/L. Under these conditions the aerobic biodegradation rate reached up to 93.18%, which was significantly higher than that obtained under original conditions. Without addition of glucose degradation efficiencies were ≤ 80% at DCM concentrations ≤ 326 mg/L. When concentrations of DCM were more than 480 rag/L, the addition of hydrogen peroxide did not help to significantly increase DCM degradation efficiency. When DCM concentrations increased from 240 to 480 rag/L, the overall DCM degradation efficiency decreased from 91% to 60% in the presence of HaO2 for 120 mg/L.Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in pure culture. The parameters investigated include the initial DCM concentration, glucose as an inducer and hydrogen peroxide as terminal electron acceptor (TEA). Maximum aerobic biodegradation efficiency was predicted to occur when the initial DCM concentration was 380 mg/L, glucose 13.72 mg/L, and H202 115 mg/L. Under these conditions the aerobic biodegradation rate reached up to 93.18%, which was significantly higher than that obtained under original conditions. Without addition of glucose degradation efficiencies were ≤ 80% at DCM concentrations ≤ 326 mg/L. When concentrations of DCM were more than 480 rag/L, the addition of hydrogen peroxide did not help to significantly increase DCM degradation efficiency. When DCM concentrations increased from 240 to 480 rag/L, the overall DCM degradation efficiency decreased from 91% to 60% in the presence of HaO2 for 120 mg/L.

关 键 词:BIODEGRADATION DICHLOROMETHANE response surface methodology 

分 类 号:X703[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象