检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军工程大学船舶与动力学院,武汉430033
出 处:《计算机应用》2009年第10期2716-2718,2722,共4页journal of Computer Applications
摘 要:为高效精确处理散乱点云数据,改进了区域生长算法。首先分析散乱数据点云的高斯曲率和平均曲率,由二次提取法(即先提取平坦点再由高斯曲率和平均曲率的记号提取其他七种曲面类型)形成初始数据分块;再通过区域生长法使粗略数据分块进一步被提取,得到更小的噪声影响及更精确的区域分块。对于各个种子区域,反复控制生长并重建以使最多的点能拟合到单个面片,并由外部噪点来中断循环。实例验证表明该方法具有较强的可操作性和实用性。To deal with scattered measured points effectively and exactly, an improved algorithm of region growing was presented. The method estimated the Gaussian and mean curvatures of scattered point cloud data. To improve the efficiency of coarse segmentation and provide an initial segmentation, the plane points were extracted, and then seven surface types were extracted from the signs of Gaussian and mean curvatures. Therefore, cloud data was refined by an iterative region growing method. For each seed region, the algorithm iterated between region growing and surface fitting to maximize the number of connected vertices approximated by a single underlying surface, and was terminated by outside noise. Experimental results show the algorithm is maneuverable and practicable.
分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68