机构地区:[1]Department of Materials Science and Engineering, Jinan University, Guangzhou, China 510632
出 处:《Chinese Science Bulletin》2009年第18期3167-3173,共7页
摘 要:Surface modification of biomaterials has been adopted over the years to improve their biocompatibility. In this study, aiming to promote hydrophilicity and to introduce natural recognition sites onto poly(L-lactic acid) (PLLA) films, chitosan and its derivatives, carboxymethyl chitosan(CMC) and N-methylene phosphonic chitosan (NPC), were used to modify the surface of PLLA films by an entrapment method. Radiolabeled (125I) proteins were used to measure the amount of protein adsorbed to PLLA surfaces. Fibronectin (Fn) was used to study the protein adsorption on the modified PLLA surfaces, including isotherm adsorption and adsorption kinetics of single protein, competitive adsorption of binary proteins system and serum multi-proteins and the desorption behavior in serum solution. The results showed that in the isotherm adsorption, Fn had a larger adsorption capacity on the CS-modified surface at lower concentrations, but had a high adsorption capacity at CMC-modified surface at higher concentrations. In the study of absorption kinetics, Fn had a fastest adsorption equilibrium and a highest equilibrium adsorption capacity at the CS-modified surface, while it was opposite at the PCS-modified surface. When BSA and serum were added, it had the greatest effect on the adsorption of Fn on the PCS-modified surface. After 6 hours soaking in the desorption study, Fn had reached desorption equilibrium on all the modified surfaces, which had different effects on the desorption rate and the remaining percentage of Fn.Surface modification of biomaterials has been adopted over the years to improve their biocompatibility. In this study, aiming to promote hydrophilicity and to introduce natural recognition sites onto poly(L-lactic acid) (PLLA) films, chitosan and its derivatives, carboxymethyl chitosan(CMC) and N-methylene phosphonic chitosan (NPC), were used to modify the surface of PLLA films by an entrapment method. Radiolabeled (^125I) proteins were used to measure the amount of protein adsorbed to PLLA surfaces. Fibronectin (Fn) was used to study the protein adsorption on the modified PLLA surfaces, including isotherm adsorption and adsorption kinetics of single protein, competitive adsorption of binary proteins system and serum multi-proteins and the desorption behavior in serum solution. The results showed that in the isotherm adsorption, Fn had a larger adsorption capacity on the CS-modified surface at lower concentrations, but had a high adsorption capacity at CMC-modified surface at higher concentrations. In the study of absorption kinetics, Fn had a fastest adsorption equilibrium and a highest equilibrium adsorption capacity at the CS-modified surface, while it was opposite at the PCS-modified surface. When BSA and serum were added, it had the greatest effect on the adsorption of Fn on the PCS-modified surface. After 6 hours soaking in the desorpUon study, Fn had reached desorption equilibrium on all the modified surfaces, which had different effects on the desorption rate and the remaining percentage of Fn.
关 键 词:材料表面改性 蛋白质吸附 改性壳聚糖 聚乳酸 衍生物 羧甲基壳聚糖 125I标记 纤维连接蛋白
分 类 号:TQ936[化学工程] TG156.8[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...