检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hassan Fahs
机构地区:[1]IFP,1 & 4 avenue de Bois-Préau,92852 Rueil-Malmaison Cedex,France
出 处:《Numerical Mathematics(Theory,Methods and Applications)》2009年第3期275-300,共26页高等学校计算数学学报(英文版)
基 金:supported by a grant from the French National Ministry of Education and Research(MENSR,19755-2005)
摘 要:A high-order leap-frog based non-dissipative discontinuous Galerkin time- domain method for solving Maxwell's equations is introduced and analyzed. The pro- posed method combines a centered approximation for the evaluation of fluxes at the in- terface between neighboring elements, with a Nth-order leap-frog time scheme. More- over, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwelrs equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high- order elements show the potential of the method.A high-order leap-frog based non-dissipative discontinuous Galerkin time-domain method for solving Maxwell's equations is introduced and analyzed.The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements,with a Nth-order leap-frog time scheme.Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes.The method is proved to be stable under some CFL-like condition on the time step.The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided.Numerical experiments with high-order elements show the potential of the method.
关 键 词:Maxwell's equations discontinuous Galerkin method leap-frog time scheme stability convergence non-conforming meshes high-order accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145