SVM的快速分类及其算法  

在线阅读下载全文

作  者:刘年义[1] 魏跃进[1] 

机构地区:[1]焦作师范高等专科学校数学系,河南焦作454000

出  处:《焦作师范高等专科学校学报》2009年第4期75-77,共3页Journal of Jiaozuo Teachers College

摘  要:针对支持向量机中当样本集训练规模很大且存在野点时,其分类速度慢且精度不高的问题,提出一个支持向量机快速算法。其基本步骤是首先求取每类样本点的壳向量和中心向量,然后将求出的壳向量和中心向量合在一起,组成新的训练集进行训练,得到最终的分类器。实验表明采用这种学习策略,不仅大幅度降低了学习代价,而且获得的分类精度与直接通过大规模样本集训练得到的分类器的分类精度相当,同时分类速度也得到大幅度提高。

关 键 词:支持向量机 大规模训练集 快速算法 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象