检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]潍坊学院计算机与通信工程学院,山东潍坊261061
出 处:《计算机应用与软件》2009年第9期78-79,105,共3页Computer Applications and Software
基 金:山东省自然科学基金项目(Y2007G65)
摘 要:类似正态分布在实际的生活与生产中分布最为广泛,精确确定的模糊概念隶属函数严重影响该类数据的预测精度。云模型把随机性和模糊性结合起来,用数字特征期望、熵和超熵,揭示随机性与模糊性的关联性。基于正态云模型设计预测算法,放宽形成正态分布要求的前提条件,把精确确定隶属函数放宽到构造正态隶属度分布的期望函数,更简单、直接地完成类正态分布的数据的预测,因而更具有普遍适用性。Normal distribution is the most common probability distribution function, and is widely used in natural science and social science, but in fact there are so many distributions which are not the precise normal distribution, but are only similar to normal distribution, accu- rately established subordination fuzzy function seriously reduces the prediction accuracy of such data. Cloud model combines randomness and fuzziness well, it reveals the association of randomness and fuzziness with digital feature expectation, entropy and ultra-entropy. The prediction algorithm designed on normal cloud model basis relaxes the prerequisite of forming a normal distribution and widens the accurately determined subordination function to expectation function which forms normal subordination distribution, thus it is more universal, easily and directly completes the prediction of normal distribution. It provides the more accurate prediction data for the national life and the production.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145