Effect of Heat Input on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Nb Microalloyed HSLA Steels  被引量:12

Effect of Heat Input on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Nb Microalloyed HSLA Steels

在线阅读下载全文

作  者:ZHANG Ying-qiao ZHANG Han-qian LI Jin-fu LIU Wei-ming 

机构地区:[1]Department of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China [2]Research Institute for Advanced Structural Steel, Research and Development Center, Baoshan Iron and Steel Limited Company, Shanghai 201900, China

出  处:《Journal of Iron and Steel Research International》2009年第5期73-80,共8页

摘  要:The influence of Nb on microstructure, mechanical property and the transformation kinetics of the coarse grain heat affected zone (CGHAZ) in HSLA steels for different heat inputs, has been investigated. When welded at higher heat inputs (100-60 kJ/cm), impact toughness values of the steel without Nb are much higher than those of the steel with Nb, and the lowest span is 153 J at 60 kJ/cm. But only a little higher values are observed at lower heat inputs (40-30 kJ/cm), and the highest span is 68 J at 30 kJ/cm. Dilatation studies indicate that continuous cooling transformation starting temperatures (Ts) of CGHAZ for the steel with Nb are approximately 15-30℃ which are lower than those of the steel without Nb at all heat inputs. For higher heat inputs, Nb in solid solution suppresses ferrite transformation and promotes the formation of granular bainite which has detrimental effect on impact toughness. For lower heat inputs higher Charpy impact energy values in the steel with Nb are associated with the formation of low carbon self-tempered martensite.The influence of Nb on microstructure, mechanical property and the transformation kinetics of the coarse grain heat affected zone (CGHAZ) in HSLA steels for different heat inputs, has been investigated. When welded at higher heat inputs (100-60 kJ/cm), impact toughness values of the steel without Nb are much higher than those of the steel with Nb, and the lowest span is 153 J at 60 kJ/cm. But only a little higher values are observed at lower heat inputs (40-30 kJ/cm), and the highest span is 68 J at 30 kJ/cm. Dilatation studies indicate that continuous cooling transformation starting temperatures (Ts) of CGHAZ for the steel with Nb are approximately 15-30℃ which are lower than those of the steel without Nb at all heat inputs. For higher heat inputs, Nb in solid solution suppresses ferrite transformation and promotes the formation of granular bainite which has detrimental effect on impact toughness. For lower heat inputs higher Charpy impact energy values in the steel with Nb are associated with the formation of low carbon self-tempered martensite.

关 键 词:HSLA steel coarse grain heat affected zone heat input NIOBIUM impact toughness 

分 类 号:TG115.56[金属学及工艺—物理冶金] TG402[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象