检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学生物医学工程系,上海200240
出 处:《中国医学物理学杂志》2009年第5期1402-1404,共3页Chinese Journal of Medical Physics
基 金:国家自然科学基金面上项目(No.60872102;No.60402021)
摘 要:目的:乳腺肿块的计算机检测可以帮助医师定位肿瘤,提高乳腺癌诊断的速度和准确率。方法:作者利用AFUM(average fraction under the minimum)[1]算子和一阶梯度向心率估计检测肿块异常区域。作者对一阶梯度向心率估计做了详细阐述,包括原理和相关参数的选择。结果:作者对40张来自Digital of Screening Mammography(DDSM)乳腺X光图像进行了检测,并将检测结果与图像库的金标准进行比较,画出FROC(false positive receiver operating characteristic)[1]曲线。平均每幅图像的假阳率约为1.792,肿瘤检出率约为90.63%,每个病例的检测时间约为2min。结论:算法可以检测出大部分的肿瘤,并且每幅图像的假阳率比较低,检测速度非常快。Objective: Breast mass computer aided detection may help clinicians to locate breast cancers, and increase its speed and accuracy. Methods: In this paper, the author detects malignant mass employing the method of average fraction under the minimum (AFUM) and the first-order gradient centripetal rate. The author also gives the detailed description of first-order gradient centripetal rate, including principles and selection of parameters. Results: The author detects 40 mammograms from DDSM, compares the results with the golden rules of DDSM, and draws the false positive receiver operating characteristic^[1](FROC) curves. More than 90.63% of breast cancers are detected, while the average false positives of an image are 1.792 and the average detection time for a case is about 2 minutes. Conclusions: The algorithm can find most breast cancers for clinicians, while the false positives of this algorithm are very low, the speed is very fast.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51