乳腺肿块的快速检测  被引量:1

Breast Mass Fast Detection

在线阅读下载全文

作  者:王明[1] 秦斌杰[1] 

机构地区:[1]上海交通大学生物医学工程系,上海200240

出  处:《中国医学物理学杂志》2009年第5期1402-1404,共3页Chinese Journal of Medical Physics

基  金:国家自然科学基金面上项目(No.60872102;No.60402021)

摘  要:目的:乳腺肿块的计算机检测可以帮助医师定位肿瘤,提高乳腺癌诊断的速度和准确率。方法:作者利用AFUM(average fraction under the minimum)[1]算子和一阶梯度向心率估计检测肿块异常区域。作者对一阶梯度向心率估计做了详细阐述,包括原理和相关参数的选择。结果:作者对40张来自Digital of Screening Mammography(DDSM)乳腺X光图像进行了检测,并将检测结果与图像库的金标准进行比较,画出FROC(false positive receiver operating characteristic)[1]曲线。平均每幅图像的假阳率约为1.792,肿瘤检出率约为90.63%,每个病例的检测时间约为2min。结论:算法可以检测出大部分的肿瘤,并且每幅图像的假阳率比较低,检测速度非常快。Objective: Breast mass computer aided detection may help clinicians to locate breast cancers, and increase its speed and accuracy. Methods: In this paper, the author detects malignant mass employing the method of average fraction under the minimum (AFUM) and the first-order gradient centripetal rate. The author also gives the detailed description of first-order gradient centripetal rate, including principles and selection of parameters. Results: The author detects 40 mammograms from DDSM, compares the results with the golden rules of DDSM, and draws the false positive receiver operating characteristic^[1](FROC) curves. More than 90.63% of breast cancers are detected, while the average false positives of an image are 1.792 and the average detection time for a case is about 2 minutes. Conclusions: The algorithm can find most breast cancers for clinicians, while the false positives of this algorithm are very low, the speed is very fast.

关 键 词:AFUM 一阶梯度向心率 乳腺X光辅助检测 ROI快速检测 

分 类 号:R319[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象