检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西财经大学信息管理学院,山西太原030006
出 处:《广西师范大学学报(自然科学版)》2009年第3期150-153,共4页Journal of Guangxi Normal University:Natural Science Edition
基 金:国家自然科学基金资助项目(60873100);山西省自然科学基金资助项目(2009011017-4)
摘 要:将粗糙集优越的约简理论应用于多标签文本分类,提出了基于粗糙集理论的多标签文本分类算法,该算法利用训练阶段得到的各个类别的分类规则与测试实例逐一匹配,得出实例的类标签集合,扩展了粗糙集理论在文本分类中的应用,实验证明算法有效可行。Range of applicat of Text classification has been widely concerned,but the researchers mainly research single-label classified,and have fewer studies on multi-label relatively. Rough Set Theory is a hot spot in the academic community currently, and researchers have recently applied it to single-label text categorization. The excellent reduct feature of rough set theory will be applied to multi-label text classification,and a multi-label text classification algorithm based on rough set is proposed,which uti- lizes classification rules of each category acquired in the training phase to match test instance one by one and obtains the label set of the instance. The algorithm expands the application of rough set theory in the text classification. The experiment result shows that the algorithm is effective and feasible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.35.52