Experimental Investigation on the Performance of Armour Grade Q&T Steel Joints Fabricated by Flux Cored Arc Welding with Low Hydrogen Ferritic Consumables  被引量:1

Experimental Investigation on the Performance of Armour Grade Q&T Steel Joints Fabricated by Flux Cored Arc Welding with Low Hydrogen Ferritic Consumables

在线阅读下载全文

作  者:G.Magudeeswaran V.Balasubramanian G.Madhusudhan Reddy G.Gopalakrishnan 

机构地区:[1]Metal Joining Research Center(MJRC),Sri Ramakrishna Engineering College,N.G.G.O Colony-Post [2]Centre for Materials Joining&Research(CEMAJOR),Department of Manufacturing Engineering,Annamalai University [3]Scientist-F,Metal Joining Section,Defence Metallurgical Research Laboratory(DMRL),Kanchanbagh(P.O)

出  处:《Journal of Materials Science & Technology》2009年第5期583-591,共9页材料科学技术(英文版)

基  金:New Delhi for funding this project work(Project No.MAA/03/41)

摘  要:Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.

关 键 词:Quenched and tempered steel Flux cored arc welding process Low hydrogen ferritic steel Tensile properties 

分 类 号:TG407[金属学及工艺—焊接]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象