检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoe RUAN Huizhuo WU Na LI Baiwu WAN
机构地区:[1]Department of Mathematics, Faculty of Science, Xi'an Jiaotong University, Xi'an 710049, China. [2]Institute of Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
出 处:《Journal of Systems Science & Complexity》2009年第3期422-434,共13页系统科学与复杂性学报(英文版)
基 金:supported by the National Natural Science Foundation of China under Grant No. F030101 60574021.
摘 要:In this paper,a decentralized iterative learning control strategy is embedded into theprocedure of hierarchical steady-state optimization for a class of linear large-scale industrial processeswhich consists of a number of subsystems.The task of the learning controller for each subsystem is toiteratively generate a sequence of upgraded control inputs to take responsibilities of a sequential stepfunctional control signals with distinct scales which are determined by the local decision-making units inthe two-layer hierarchical steady-state optimization processing.The objective of the designated strategyis to consecutively improve the transient performance of the system.By means of the generalized Younginequality of convolution integral,the convergence of the learning algorithm is analyzed in the sense ofLebesgue-p norm.It is shown that the inherent feature of system such as the multi-dimensionality andthe interaction may influence the convergence of the non-repetitive learning rule.Numerical simulationsillustrate the effectiveness of the proposed control scheme and the validity of the conclusion.
关 键 词:Convergence effectiveness iterative learning control large-scale systems Lebesgue-pnorm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.191