检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京化工大学理学院,北京100029 [2]北京化工大学经济管理学院,北京100029
出 处:《数学的实践与认识》2009年第19期48-55,共8页Mathematics in Practice and Theory
基 金:国家自然科学基金(70801003;70701003)
摘 要:以大型连锁卖场的选址为研究背景,提出了一个在竞争环境下使获利最大的竞争选址定价双层规划模型,其中上层模型做出选址决策,下层模型确定产品的纳什均衡价格.将设施效用引入到模型中,用指数效用函数来刻画顾客的购物行为偏好,首次证明了不合作状态下双方价格均衡解的存在性和唯一性,并给出了求解最优设施点设置方案和价格均衡解的算法思想及数值算例.In this paper, a bi-level programming model is developed to investigate facility location strategies and product pricing strategies for the best profit under a competitive environment. The upper-level model focuses on the location decision, while the lower-level model is used to investigate the Nash equilibrium prices. Facility utility is introduced into the hi-level programming model and an exponent function is taken to depict the patronizing preference of customers. In the lower-level model, the existence and uniqueness of Nash equilibrium prices are proved firstly when companies are non-cooperative. Besides, an algorithm is presented to solve the model and an example is used to show how to find the Nash equilibrium prices and the optimal location solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.181.36