检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]机械制造系统工程国家重点实验室,智能网络与网络安全教育部重点实验室,西安交通大学电信学院,陕西西安710049
出 处:《中文信息学报》2009年第5期75-79,共5页Journal of Chinese Information Processing
基 金:国家自然科学基金资助项目(60774086);国家863计划资助项目(2007AA01Z464)
摘 要:网络评论数据的情绪倾向性信息对于企业商业智能系统、政府舆情分析等诸多领域有着广阔的应用空间和发展前景。该文基于语言类比超空间(HAL空间),利用信息推理方法,给出了一种短语级别的评论数据情绪倾向分类模型。该模型首先从评论文本中抽取符合预定义模式的短语,然后运用基于HAL空间的概念组合算法,将短语组合为概念C,最后使用信息推理算法,对概念C按情绪分类。实验表明,与SVM算法和Term-Count算法相比,该文的模型对于网络在线新闻评论数据分类效果较好。Automatic classification of online comments according to their sentiment orientation is a complicated task with promising application in many domains such as enterprise intelligence system, administration of public emergencies and so on. Based on the Hyperspace Analogue to Language (HAL space) and the information inference, we propose a new model for classification of online comments in accordance with implicit or explicit sentiment expressed in comments. We first extract phrases which match our pre-defined patterns from sentences in comments, and then based on HAl. space, a conception combination algorithm is employed to blend the words in the extracted phrases into one conception, whose sentiment orientation is calculated by the proposed information inference model. Finally, the sum of information inference degree of individual phrases indicates the sentimental polarity of comments. The experiment results show that, compared to SVM and Term Count algorithms based on valence shifters and sentimental words table, our model performs better and achieves an accuracy as high as 89 %.
关 键 词:计算机应用 中文信息处理 信息推理 情绪分类 HAL 语义倾向性
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117