检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]绵阳师范学院数学与计算机科学学院,四川绵阳621000
出 处:《绵阳师范学院学报》2009年第8期12-13,21,共3页Journal of Mianyang Teachers' College
摘 要:牛顿n-问题是主要研究在牛顿运动定律和万有引力的作用下,天体的运动规律。一般而言,n-体问题就是一个常微分方程组。由于方程组是非线性的,当天体的个数大于3时,n-体问题不可能完全解决,故转而求特解,相对均衡解就是其中之一。该文利用微分几何对相对均衡解共面性给出另一证明。证明过程揭示了相对均衡解的几何性质。The "Newtonian N- bodies move in settings where the dynamics are dictated by Newton's law of motion and the law of gravity. In general, n - body problem is a system of ordinary differential equations being nonlinear. There is good evidence that the general n -body problem is not solvable when there exist more than three spherical bodies. It is necessary to look for special solutions one of which is relative equilibrium solution. In this article, another proof for relative equilibrium solution is given by using differential geometry. The process shows the geometric features of relative equilibrium solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7