检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷松泽[1] 姚红革[1] 齐敏[1] 郝重阳[1]
出 处:《计算机工程与应用》2009年第30期171-173,共3页Computer Engineering and Applications
摘 要:为了提高人耳检测中图像匹配的精确性,提出对内外耳轮廓加权,并利用Hausdorff距离进行人耳检测的算法。在传统的Hausdorff距离匹配中,图像如果受噪声干扰或边缘不连续等情况,检测结果不理想。因此为使检测位置更加接近外耳轮廓,需要强调外耳轮廓的作用,这通过对外耳加大权值、对内耳加小权值实现,然后再结合加权Hausdorff距离进行图像匹配计算。仿真实验表明,提出的算法是有效的。相比传统Hausdorff距离和平均Hausdorff距离的匹配,人耳轮廓加权的算法更加精确。An ear detection algorithm is proposed in order to make image matching accurate.The algorithm gives weighted inside and outside contour and uses Hausdorff distance to detect ear image.If image has noises or outside ear contour is not continuous,the result of detection is not good by using classical Hausdorff dlstance.For making the position of detection close to the outside ear contour,the outside ear contour needs to be emphasized.It is realized by giving larger weight for outside ear contour than inside ear contour.And then weighted contour combining with weighted Hausdorff distance is to match ear image.Experiments show that the algorithm proposed in this paper is effective.Compared with classical Hausdorff distance and average Hausdorff distance,the result of weighted contour algorithm is more precise.
关 键 词:HAUSDORFF距离 人耳检测 图像匹配 轮廓加权
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.136.129