检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁建华[1]
机构地区:[1]南京工业大学电子与信息工程学院,南京210009
出 处:《计算机应用》2009年第11期3008-3010,共3页journal of Computer Applications
摘 要:超分辨率图像重建是一个病态问题,在重建过程中需要正则化处理,而正则化重建会引入正则化误差及重建过程中由于病态性而引入的噪声放大误差,且这两类误差均和图像的空间局部特性有关。提出根据图像的局部空间统计特性自适应控制超分辨率图像正则化重建算法,采用图像局部统计方差来区分图像棱边区域及平滑区域,在图像的棱边区域加强图像的约束重建,而在图像的平滑区域加强正则化。实验表明该算法能有效地减小重建误差,算法的信噪比得益优于传统的正则化重建算法及总变分模型重建算法,并且对正则化参数的选择具有一定的鲁棒性。Super-resolution image processing is an ill-posed problem, which needs to be regularized in the reconstruction. There are two class regularization errors in the regularized reconstruction image, which are related strongly to the local structures encountered within the image. An algorithm about super-resolution image reconstruction was proposed, which could reconstruct the super-resolution image adaptively based on the image local structures. The edge region and the smooth region were distinguished by the image local statistic variance. The observed model was reinforced in the edge region during the reconstruction, while the regularization was emphasized in the smooth region. The experiments show this algorithm is better than the traditional algorithms and the TV reconstruction algorithms, and is robust to the regularization parameter.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145