基于云模型和灰关联的油气圈闭多域信息评价  被引量:2

MULTI-DOMAIN INFORMATION ASSESSMENT OF OIL & GAS TRAPS BASED ON CLOUD MODEL AND GREY RELATIONAL ANALYSIS

在线阅读下载全文

作  者:吴国平[1] 敖敏思[1] 吴亦奇[2] 徐红燕[3] 王晓明[1] 

机构地区:[1]中国地质大学信息工程学院 [2]中国地质大学计算机学院,湖北武汉430074 [3]中国地质大学图书馆,北京海淀100083

出  处:《西南石油大学学报(自然科学版)》2009年第5期1-5,共5页Journal of Southwest Petroleum University(Science & Technology Edition)

基  金:国家自然科学基金项目(40674069)

摘  要:云模型是在传统模糊数学和概率统计的基础上提出的定性、定量转换模型。为了建立油气藏与圈闭面积、圈闭闭合幅度、油气运移通道、地层孔隙度、烃源生油与圈闭形成时间、空间匹配性等因素的定性定量关系,传统的多域信息评价方法多采用因素硬化值构建定性定量关系模型,这很大程度受制于专家的知识和经验。结合云模型和灰关联分析,考虑油气圈闭评价因素的模糊性、随机性和小样本不确定性,实现圈闭多域信息的定性与定量间的转换,提出了一种油气圈闭多域信息评价新方法。对中国西北顺托果勒某地区提取的圈闭进行评价,分别划分出了Ⅰ、Ⅱ和Ⅲ类圈闭,其中Ⅰ类圈闭占圈闭总数的37.5%;Ⅱ类圈闭占圈闭总数的37.5%;Ⅲ类圈闭占圈闭总数的25%,与实际开发评价结果吻合。Cloud model,which is proposed based on the traditional fuzzy mathematics and probability statistics theory,is a conversion model between qualitative concept and quantitative values.In order to establish the quantitative and qualitative relationship between oil & gas reservoir and the trap area,trap closure amplitude,hydrocarbon migration channel,formation porosity,the relationship among the oil generation,trap forming and special compatibility,the imposed threshold was frequently involved in traditional way of multi-domain information assessment to build the relation model,which is limited by the experiences of experts to a great extent.With consideration on the fuzziness,randomness and uncertainty of small samples,a new approach to multi-domain information assessment based on cloud model and grey relational analysis is presented in this paper.With assessment to the traps of Shuntuoguole in Northwest China,type Ⅰ,Ⅱand Ⅲ traps are identified.Among them,typeⅠ accounts for 37.5% of the total,type Ⅱ takes up 37.5% and the proportion of type Ⅲ is 25%,which is consistent with practical development assessment.

关 键 词:圈闭评价 多域信息 云模型 灰关联 不确定性 

分 类 号:TE122.3[石油与天然气工程—油气勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象