Surface latent heat flux anomalies preceding inland earthquakes in China  被引量:4

Surface latent heat flux anomalies preceding inland earthquakes in China

在线阅读下载全文

作  者:Kai Qin Guangmeng Guo Lixin Wu 

机构地区:[1]College of Geosciences and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China [2]College of Environmental Science and Traveling, Nanyang Normal University, Nanyang 473061, Henan, China [3]Academy-of Disaster Reduction and EmergencyManagement, Ministry of Civil Affairs,-Ministry of Education ( Beijing Normal University), Beijing 100875, China

出  处:《Earthquake Science》2009年第5期555-562,共8页地震学报(英文版)

摘  要:Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and arid area of China during recent years. We used the SLHF daily and monthly data to differentiate the global and seasonal variability from the transient local anomalies. The temporal scale of the observed variations is 1-2 months before and after the earthquakes, and spatial scale is about 10°×10°. The result suggests that the SLHFs adjacent the epicenters all are anomalous high value (〉μ+2σ) 8-30 days before the shocks as compared with past several years of data. Different from the abnormal meteorological phenomenon, the distribution of the anomalies was isolated and local, which usually occurred in the epicenter and its adjacent area, or along the fault lines. The increase of SLHF was tightly related with the season which the earthquake occurs in; the maximal (125 W/m^2, Pu'er earthquake) and minimal (25 W/m^2, Gaize earthquake) anomalies were in summer and winter, respectively. The abundant surface water and groundwater in the epicenter and its adjacent region can provide necessary condition for the change of SLHF. To further confirm the reliability of SLHF anomaly, it is necessary to explore its physical mechanism in depth by more earthquake cases.Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and arid area of China during recent years. We used the SLHF daily and monthly data to differentiate the global and seasonal variability from the transient local anomalies. The temporal scale of the observed variations is 1-2 months before and after the earthquakes, and spatial scale is about 10°×10°. The result suggests that the SLHFs adjacent the epicenters all are anomalous high value (〉μ+2σ) 8-30 days before the shocks as compared with past several years of data. Different from the abnormal meteorological phenomenon, the distribution of the anomalies was isolated and local, which usually occurred in the epicenter and its adjacent area, or along the fault lines. The increase of SLHF was tightly related with the season which the earthquake occurs in; the maximal (125 W/m^2, Pu'er earthquake) and minimal (25 W/m^2, Gaize earthquake) anomalies were in summer and winter, respectively. The abundant surface water and groundwater in the epicenter and its adjacent region can provide necessary condition for the change of SLHF. To further confirm the reliability of SLHF anomaly, it is necessary to explore its physical mechanism in depth by more earthquake cases.

关 键 词:inland earthquake surface latent heat flux thermal anomaly satellite data 

分 类 号:P631.2[天文地球—地质矿产勘探] P315.73[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象