Particle Estimation Algorithm Using Angle between Observation Vectors for Nonlinear System State  

Particle Estimation Algorithm Using Angle between Observation Vectors for Nonlinear System State

在线阅读下载全文

作  者:LIANG Jun LIANG Jun PENG Yu PENG Yu PENG Xiyuan[1] PENG Xiyuan[1] 

机构地区:[1]Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China [1]Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China

出  处:《Chinese Journal of Electronics》2009年第4期700-702,共3页电子学报(英文版)

摘  要:A particle estimation algorithm where the weight of the particle is related to angle between observa- tion vectors is presented for nonliear system state. When the likelihood has a bimodal nature, this algorithm leads to more accurate state estimates than Sequential importance resampling (SIR), Auxiliary particle filter (APF), Regu- larized particle filter (RPF), and Gaussian particle filter (GPF).

关 键 词:Nonliear system State estimation Par- ticle filter Sequential importance resampllng (SIR)~ Aux- iliary particle filter (APF) Regularized particle filter (RPF) Gaussian particle filter (GPF). 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TP301.6[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象