检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学计算机学院,湖南长沙410073
出 处:《计算机工程与科学》2009年第11期1-3,29,共4页Computer Engineering & Science
摘 要:I/O调度算法对磁盘阵列(RAID)性能具有至关重要的影响。虽然已有很多典型的I/O调度算法在一定负载情况下可获得较好的性能,但很难有哪一种算法在各种负载情况下均能获得很好的性能。本文提出了一种智能RAID控制模型,结合C4.5决策树和AdaBoost算法实现负载自动分类,根据负载变化和性能反馈情况动态调整I/O调度策略,实现面向应用需求的自治调度。模拟实验结果表明,自适应调度算法具有较好的适应性,在各种负载情况下优于现有的I/O调度算法,尤其适用于多线程混合负载环境的I/O性能优化。The I/O scheduling algorithm has crucial influence upon the disk array (RAID) performance. Although there are many typical I/O scheduling algorithms which get preferable performance in certain workload cases, unfortunately, it is difficult for a single universal scheduler to be capable of providing superior performance across all system workloads. This paper introduces an intelligent RAID control model and a new method to resolve this problem. Combining the CA. 5 decision tree and the AdaBoost algorithm to automatically recognize the type of the workload, adjusting the I/O scheduling strategy dynamically according to the workload changes and performance feedback, and a self-optimizing scheduler is implemented to accommodate the demand of applications. The simulation results show that the adaptive scheduling algorithm can adapt to a wide variety of workloads. It outperforms the existing I/O scheduling algorithms under various workloads, and is especially suitable forI/O performance optimization in the environment of multi-threaded and mixed workloads.
关 键 词:调度算法 智能存储控制 负载分类 RAID控制器
分 类 号:TP303[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222