Numerical Simulation of Impact on Pneumatic DTH Hammer Percussive Drilling  被引量:17

Numerical Simulation of Impact on Pneumatic DTH Hammer Percussive Drilling

在线阅读下载全文

作  者:卜长根 瞿叶高 程志强 刘宝林 

机构地区:[1]School of Engineering and Technology,China University of Geosciences

出  处:《Journal of Earth Science》2009年第5期868-878,共11页地球科学学刊(英文版)

基  金:supported by the National Natural Science Foundation of China (No. 50475056)

摘  要:The process of DTH(down-the-hole) hammer drilling has been characterized as a very complex phenomenon due to its high nonlinearity,large deformation and damage behaviors.Taking brittle materials(concrete,granite and sandstone) as impact specimens,the explicit time integration nonlinear finite element code LS-DYNA was employed to analyze the impact process and the penetration boundary conditions of DTH hammer percussive drilling system.Compared with previous studies,the present model contains several new features.One is that the 3D effects of DTH hammer drilling system were considered.Another important feature is that it took the coupling effects of brittle materials into account to the bit-specimen boundary of the drilling system.This distinguishes it from the traditional approaches to the bit-rock intersection,in which nonlinear spring models are usually imposed.The impact forces,bit insert penetrations and force-penetration curves of concrete,granite and sandstone under DTH hammer impact have been recorded;the formation of craters and fractures has been also investigated.The impact loads of piston-bit interaction appear to be relatively sensitive to piston impact velocity.The impact between piston-bit interaction occurs at two times larger forces,whereas the duration of the first impact doesn't change with respect to the piston velocity.The material properties of impact specimen do not affect the first impact process between the piston and bit.However,the period between the two impacts and the magnitudes of the second impact forces greatly depend on the specimen material properties.It is found that the penetration depth of specimen is dependent on the impact force magnitude and the macro-mechanical properties of the brittle materials.The process of DTH(down-the-hole) hammer drilling has been characterized as a very complex phenomenon due to its high nonlinearity,large deformation and damage behaviors.Taking brittle materials(concrete,granite and sandstone) as impact specimens,the explicit time integration nonlinear finite element code LS-DYNA was employed to analyze the impact process and the penetration boundary conditions of DTH hammer percussive drilling system.Compared with previous studies,the present model contains several new features.One is that the 3D effects of DTH hammer drilling system were considered.Another important feature is that it took the coupling effects of brittle materials into account to the bit-specimen boundary of the drilling system.This distinguishes it from the traditional approaches to the bit-rock intersection,in which nonlinear spring models are usually imposed.The impact forces,bit insert penetrations and force-penetration curves of concrete,granite and sandstone under DTH hammer impact have been recorded;the formation of craters and fractures has been also investigated.The impact loads of piston-bit interaction appear to be relatively sensitive to piston impact velocity.The impact between piston-bit interaction occurs at two times larger forces,whereas the duration of the first impact doesn't change with respect to the piston velocity.The material properties of impact specimen do not affect the first impact process between the piston and bit.However,the period between the two impacts and the magnitudes of the second impact forces greatly depend on the specimen material properties.It is found that the penetration depth of specimen is dependent on the impact force magnitude and the macro-mechanical properties of the brittle materials.

关 键 词:pneumatic DTH hammer percussive drilling LS-DYNA brittle material impactforce-penetration curve. 

分 类 号:P634[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象