检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金志超[1] 陆健[1] 吴骋[1] 高青斌[1] 孙亚林[1] 贺佳[1]
出 处:《中国卫生统计》2009年第5期450-454,458,共6页Chinese Journal of Health Statistics
基 金:国家自然科学基金资助(30671821);国家自然科学基金资助(30800943);国家自然科学基金资助(30872186);上海市基础研究重点项目(08JC1405100)
摘 要:目的比较两种基于偏最小二乘法的分类模型对肿瘤基因表达数据行多分类分析的效果,比较不同差异基因选取方法对分类结果的影响。方法利用NCI60等4个肿瘤基因表达数据库,通过4种不同方法选取差异表达基因,在此基础上,用两种基于偏最小二乘的方法行多分类分析。一是偏最小二乘线性判别,首先运用偏最小二乘法行降维,再利用降维得到的成分作为输入变量作线性判别分析;二是偏最小二乘判别分析,利用偏最小二乘回归直接进行分类。分类效果采用留一法和10倍交叉验证法进行评价。结果偏最小二乘判别分析的分类效果略优于偏最小二乘降维后的线性判别。以变量重要性指标选取差异表达基因时分类效果较好,其次是SAM法。结论在对肿瘤基因表达数据行多分类分析时,偏最小二乘法既是一种高效的降维方法,也是一种实用的分类方法。Objective To compare two multiple classification methods based on partial least squares (PLS) using tumor microarray gene expression data and to compare the influence of four different significant gene selection methods to the classification models. Methods Using four real tumor microarray gene expression data, four different significant gene selection methods were performed, and then two classification methods were carried out. One is first using PLS to reduce the dimension and then using linear discrimination analysis to perform classification ( PLA-LDA). Another is using PLS regression to perform classification directly (PLS-DA). Leave one out cross validation and 10-fold cross validation were used to evaluate the classification model. Results PLS-DA outperformed PLS-LDA on four microarray gene expression data. Conclusion PLS is a powerful and versatile tool to perform dimension reduction and multiple classification.
分 类 号:R195[医药卫生—卫生统计学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222