Low complexity resource allocation and scheduling algorithms for downlink SDMA systems  

Low complexity resource allocation and scheduling algorithms for downlink SDMA systems

在线阅读下载全文

作  者:SUN Kai WANG Ying ZHANG Ping 

机构地区:[1]College of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China [2]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

出  处:《The Journal of China Universities of Posts and Telecommunications》2009年第5期33-40,共8页中国邮电高校学报(英文版)

基  金:supported by the National Natural Science Foundation of China (6077212, 60772166)

摘  要:The downlink zero-forcing beamforming strategy in the case of random packet arrivals is investigated. Under this setting, the relevant fairness criterion is the stabilization of all buffer queues which guarantees a bounded average delay for all users. It has been shown that allocating resources to maximize a queue-length-weighted sum of the rates is a stabilizing policy. However, the high complexity of user selection and the feasible rates determination for optimal scheme may prevent the real-time scheduling operation. Two low complexity algorithms are provided taking the channel state, queue state and orthogonality into account. In particular, the authors pick the first user with the largest product between channel gain and queuing length, and select the remaining users to construct candidate user set based on the greedy user selection method or channel orthogonal user selection method. Then, the power and rate allocation for the selected users are implemented based on the modified water-filling method. The complexity of the proposed algorithms is analyzed. The average delay and average throughput are studied in homogeneous scenarios and heterogeneous scenarios, respectively. Simulation results show that the proposed algorithms can take full advantage of the multi-user diversity gain and provide average delay (or throughput) and fairness improvement compared with channel-aware-only schemes.The downlink zero-forcing beamforming strategy in the case of random packet arrivals is investigated. Under this setting, the relevant fairness criterion is the stabilization of all buffer queues which guarantees a bounded average delay for all users. It has been shown that allocating resources to maximize a queue-length-weighted sum of the rates is a stabilizing policy. However, the high complexity of user selection and the feasible rates determination for optimal scheme may prevent the real-time scheduling operation. Two low complexity algorithms are provided taking the channel state, queue state and orthogonality into account. In particular, the authors pick the first user with the largest product between channel gain and queuing length, and select the remaining users to construct candidate user set based on the greedy user selection method or channel orthogonal user selection method. Then, the power and rate allocation for the selected users are implemented based on the modified water-filling method. The complexity of the proposed algorithms is analyzed. The average delay and average throughput are studied in homogeneous scenarios and heterogeneous scenarios, respectively. Simulation results show that the proposed algorithms can take full advantage of the multi-user diversity gain and provide average delay (or throughput) and fairness improvement compared with channel-aware-only schemes.

关 键 词:space-division multiple access (SDMA) resource allocation scheduling algorithm ZERO-FORCING 

分 类 号:TN927.2[电子电信—通信与信息系统] TP301.6[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象