检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院地质研究所
出 处:《岩石学报》1998年第4期409-418,共10页Acta Petrologica Sinica
基 金:国家杰出青年基金;国家科技部攀登项目
摘 要:熔体的粘滞度极大地影响熔体的各种动力学行为。虽然有一些有关酸碱性熔体粘滞度的数据,但涉及地球更深部过程的基性和超基性熔体的粘滞度的数据很少。本项研究利用平衡分子动力学方法研究Mg2SiO4成分熔体温度从2169K到5595K,压力从105Pa到135GPa的粘滞度,所获得的粘滞度数据介于Urbainetal.(1982)和IvanovandStengelmeyer(1982)的实验数据之间,比Shaw(1972)和Persikov(1990)的经验方程高大约高0.6个对数单位。研究结果表明该熔体的粘滞度随温度的变化比酸碱性岩浆要小得多,在大约105Pa条件下随温度有如下关系式:logη(Pas×10-1)=4.215×103T(K)-2.699Mg2SiO4熔体粘滞度随压力的增加而线性增加。这与前人关于聚合程度低的液体的行为一致。在5500K左右,从105Pa到135GPa,它的粘滞度大约变化一个数量级。这与酸碱性熔体相比也是较小的。本项研究获得的粘滞度与压力的关系如下:η(Pas×10-1)=7.267×10-5P(GPa×10-1)+4.158×10-3总之,Mg2SiO4熔体粘滞度的温度和压力效应均大?Shear viscosity controls the dynamic behaviors of melts. Although many viscosity data exist for acidic alkaline melts, there are few viscosity data for basic and ultra basic melts at very high temperatures and pressures. These data are especially important for our understanding of dynamic processes in the very deep Earth. In the present study the equilibrium molecular dynamics method is used to obtain the viscosity of Mg 2SiO 4 melt in the temperature range from 2169K to 5595K and pressure from 10 5 Pa to 135 GPa. The potential model used is from Belonoshko and Dubrovinsky (1996). Direct integration of Green Kubo formula is used for obtaining shear viscosity (Allen and Tildesley, 1987). The control parameters for molecular dynamics simulation are as follows: single time step = 0 0002ps, total time step = 24ps, equilibration period = 4ps. The cutoffs were chosen according to Fincham (1993). To have an idea about the influence of these control parameters on the calculated viscosity, we have made 7 molecular dynamics runs all at 3000K and 2 700 g/cm 3. These 7 runs give us an averaged viscosity of 0 0051 Pa·s with a standard deviation of 0 0017. The shear viscosity data obtained in the present study are in between the experimental data of Urbain et al. (1982) and Ivanov and Stengelmeyer (1982), and are higher than the empirical formula of Shaw (1972) and Persikov (1990) by about 0 6 log unit. It is shown that the viscosity of Mg 2SiO 4 melt has a much smaller variance with temperature compared with acidic alkaline type melt. At about 10 5Pa, the relationship between viscosity and temperature for the Mg 2SiO 4 melt is as follows: log η( Pa·s ×10 -1 )=4 215× 10 3T( K )-2 699 with the correlation coefficient R 2=0 837.The viscosity of Mg 2SiO 4 melt is positvely and linearl
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69