检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2009年第22期26-28,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60773213);辽宁省自然科学基金资助项目(20071092)
摘 要:通过高维时间序列分割可以创建高级符号表示。提出一种针对高维时间序列的无监督分割算法,用于解决高维数据符号化的预处理问题。该算法实现对高维数据的聚类,应用最大熵投票模型进行序列分割。实验结果表明,其平均查全率和查准率分别为0.86和0.88,且整体性能优于主成分分析算法和概率主成分分析算法。Through the high-dimension segmentation, the high-level symbol expression can be created. This paper proposes an unsupervised segmentation algorithm for high-dimension time series. This method can solve the pretreatment problem of high-dimension symbolization. It realizes the clustering of high-dimension data, and uses max entropy voting model to do series segmentation. Experimental results show that the algorithm's average recall ratio and precision ration are respectively 0.86 and 0.88. Its whole performance is better than Principal Component Analysis(PCA) algorithm and Probability Principal Component Analysis(PPCA) algorithm.
关 键 词:最大熵投票模型 k-mean聚类 高维时间序列 无监督分割
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15