检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周红辉[1,2,3] 周昌乐[1,2,3]
机构地区:[1]浙江大学人文学院语言与认知研究中心,浙江杭州310028 [2]湛江师范学院外国语学院,广东湛江524048 [3]厦门大学智能科学与技术系,福建厦门361005
出 处:《西安外国语大学学报》2009年第4期24-28,共5页Journal of Xi’an International Studies University
基 金:国家社会科学基金资助项目(04BZX045);国家自然科学基金资助项目(60373080)
摘 要:认知科学的发展给语境研究带来了新的理论和新的研究方向。近年来,学者们采用框架、图式和认知域等理论对认知语境的性质、特征和应用等方面进行了富有成果的研究,但对于认知语境的动态建构过程和机制关注较少。本文注意到人工智能研究的新成果——大脑思维的"自联想—预测"模式对于认知语境的建构具有较好的解释力。本文结合Istvan Kecskes最近提出的动态语义模式语境观对关联理论的认知语境即"语境假设"进行了重新思考,提出并验证了"语境假设"的动态建构的"自联想—预测"思维模式和机制。With the development of cognitive science, many new theories and methods such as schemata theory, frame theory and cognition domain theory have been adopted in the study of cognitive context. Accordingly, plenty of fruitful results have been achieved. But as for the process of cognitive context dynamic construction, little attention has been paid. In this paper, we notice that the new Artificial Intelligent Theory, "Self Association-Prediction" Model, has a profound explanation to this issue. With Dynamic Context Model offered by Istvan Kecskes lately, we have a second thought on Relevance' cognitive context theory, the context assumption, and we state and prove that "Self Association-Prediction" Model is the very thought pattern and construction mechanism of Context Assumption.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195