检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学理学院化学系计算机化学实验室,上海200444
出 处:《计算机与应用化学》2009年第11期1451-1454,共4页Computers and Applied Chemistry
基 金:上海市重点学科建设项目资助(J50101)
摘 要:本文从文献中收集了多个钙钛矿结构的掺杂LaGaO_3系列氧离子导体电解质材料样本,以导电率的对数Ln(?)为目标,使用各种机器学习方法进行回归分析,包括多元线性回归(MLR)、偏最小二乘法(PLS)和支持向量回归(SVR),建立了Ln(?)与其分子结构参数之间的定量模型。结果表明:SVR方法所得导电率Ln(?)的留一法预报结果与实验最相符,计算值与实验值的相关系数为0.911。使用独立测试集预报的计算值和实验值的相关系数为0.880。此外还用建立的模型对La_(1-x)Sr_xGa_(1-y)Mg_yO_3掺杂体系的导电率进行了预报,根据预报结果做出的等高面图显示的优区与实验所得结果一致。In this paper, Molecular parameters and ionic conductivities data of perovskite-type oxides of doped LaGaO3 series were collected from literatures and experiments. The relationship between the electrical conductivities and the molecular parameters was examined. The data were processed by several machine learning methods, including Multiple Linear Regression ( MLR), Partial Least Squares (PIS) and Support Vector Regression (SVR). The conductivities values of SVR leave-one-out cross validation were corresponded with the values of experiments. The correlation coefficient of calculated values and experimental values was 0. 911. Independ- ent test set was used for prediction, and the correlation coefficient of values of prediction and experiment was 0. 880. The model was used in the prediction of doped system of La1-xSrxGa1-yMgyO3. A diagram of contour was obtained from the results of prediction. It showed excellent agreement with experimental results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112