检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋国明[1,2] 雷霖[1] 王厚军[1] 谌强[1]
机构地区:[1]电子科技大学自动化工程学院,四川成都610054 [2]成都电子机械高等专科学校计算机系,四川成都610031
出 处:《测控技术》2009年第11期68-72,共5页Measurement & Control Technology
基 金:国家自然科学基金资助项目(60673011);国防基础科研项目(A1420061264)
摘 要:在分析现有模拟电路多频灵敏度故障诊断方法的基础上,提出一种新的测试频率范围的选择方法,即灵敏度矩阵分析方法。灵敏度矩阵作为故障诊断方程的一个系数矩阵,它的奇异性制约着故障诊断方程解的存在性,而灵敏度矩阵又是测试频率的函数。通过化简故障诊断方程,建立灵敏度矩阵的奇异性与测试频率的关系,从而直接判断故障诊断方程的可解性。仿真实验表明,该方法可以选择一组最佳的测试参数和测试频段,准确地识别电路中的双故障,从而克服现有方法测试频率选择与诊断方程可解性之间的模糊性,增加求解故障诊断方程的可控性和提高故障的诊断率。After analyzing current fault diagnosis methods based on multi-frequency sensitivity in analog circuits, a new sensitivity matrix analysis approach is presented to select testing frequency. As a coefficient matrix of fauh diagnosis equations, singularity of the sensitivity matrix restricts its solutions. On the other hand, sensitivity matrix is a function of testing frequency. By simplifying diagnosis equations, the relation between testing frequency and matrix singnlarity is established to identify the existence of equation' s solutions directly. Experimental results show that this approach can be used to select more appropriate testing parameters and frequency bands. Double faults are validated exactly in simulation circuits. The controllability of solving tions is increased and the fault diagnosis veracity is improved as well. diagnosis equations is increased and the fault diagnosis veracity is improved as well.
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38